
Juice Shop Report 1

Juice Shop Report

Document Information

Description A web application penetration test report for OWASP juice shop

Recipient Juice Shop Administrators

Associated
Documents

Proof of Change
Version Status Modification By Date

V0.0.1 Creation of
Document

Create the
Document

Leo Smith 28/12/2022

V0.0.2 Edits for Juice
Shop

Added Juice Shop
data

Leo Smith 29/02/2024

Responsibility
Role Name Company Function

Author Leo Smith Leo Smith Consulting Penetration Tester

Table of Content
Document Information

Proof of Change
Responsibility

Juice Shop Report 2

Table of Content
Executive Summary

Assessment Overview
High-Level Test Outcomes
Most Likely Compromise Scenarios
Implications
Overall Risk Rating
Overall Remediation Advice

Test Scope and Method
Allowed Scope
Methodology Used
Found Vulnerabilities

Technical Explanation
Business Logic

Overview
How to replicate
Remediation

SQL Injection
Overview
How to replicate
Remediation

Information Disclosure
Overview

How to replicate
Remediation

Insecure Direct Object Reference
Overview
How to replicate
Remediation

Insecure direct object reference
Overview
How to replicate
Remediation

Reflected Cross Site Scripting
Overview
How to replicate
Remediation

Business Logic
Overview

Juice Shop Report 3

How to replicate
Remediation

Information Disclosure
Overview
How to replicate
Remediation

Insecure Direct Object Reference
Overview
How to replicate
Remediation

Observable Response Discrepancy
Overview
How to replicate
Remediation

Cross Site Request Forgery
Overview
How to replicate
Remediation

Information Disclosure
Overview
How to replicate
Remediation

Business logic
Overview
How to replicate
Remediation

Information Disclosure
Overview
How to replicate
Remediation

HTML Injection through Feedback
Overview
How to replicate
Remediation

Cookies Missing HTTP Only Flags
Overview
How to replicate
Remediation

Juice Shop Report 4

Executive Summary
Assessment Overview
The Leo Smith Consulting Penetration testing team evaluated the security posture of
the Juice Shop Web Application through a Penetration Test which allowed to show
the different flaws in configuration and implementation of the Juice Shop Web
service. A penetration test emulates an external threat actor which is trying to
compromise different External Systems through the exploitation of multiple
vulnerable configuration in the provided service. In this current Web Application
Penetration Test the objective was to analyze the external security posture of the
web application Juice Shop and discover possible vulnerabilities on the Juice Shop
to gain Administrative access on the application and extract sensitive client
information and transactions.

High-Level Test Outcomes
The team uncovered multiple vulnerabilities inside of the web application. The
penetration testing team identified critical vulnerabilities that demand immediate
attention. The most severe vulnerabilities include Business Logic and Authentication
Bypass, both of which pose significant risks to the system's integrity and security.
Following these critical issues, the team found several high-risk vulnerabilities,
including robots.txt revealing hidden folders, Insecure Direct Object Reference, the
ability to recycle signups as other users, reflected XSS, Business Logic (repeated),
Password leak, and Regular User capability to delete feedback on the admin panel.
These high-risk vulnerabilities should be promptly addressed to mitigate potential
exploits. Additionally, medium-level vulnerabilities such as User Name Enumeration
and CSRF were identified, requiring attention to prevent security breaches. The team
also observed low-risk issues, such as Information Disclosure, Bully chat bot, Front-
End showing routes, and HTML Injection through Feedback. While these are less
critical, addressing them enhances overall system security. Lastly, two informational
vulnerabilities were noted: Cookies Missing HTTP Only flags and HTML Injection
through Feedback, providing insights for improved security measures.

Most Likely Compromise Scenarios

Juice Shop Report 5

If a client of Juice Shop has malicious intent he would be able with little effort to take
control over the administrator account delete users get free items and make Juice
Shop debit money to a bank account controlled by the attacker which would lead to
financial impact through the different vulnerabilities found on the Juice Shop
website. It would also be possible for malicious users to gain access to premium
membership without paying which would lead to more financial losses to the Juice
Shop Organization.

Implications
Based on the above testing activities the average risk level across the board is
Critical. The website has a very small security posture and is currently vulnerable to
Critical financial impact if compromised. The confidentiality and integrity of the web
application is low and could lead to fines through GDPR regulations and should be
addressed as soon as possible.

Overall Risk Rating

Overall Remediation Advice
The security posture should be improved by fixing the vulnerabilities mentioned in
this report and through the implementation of a Web Application Firewall like
cloudflare for example.

Juice Shop Report 6

Test Scope and Method
Allowed Scope
The allowed scope for this engagement was the following:

OWASP Juice Shop: http://localhost/

The testing team was not provided accounts for testing

Methodology Used
Starting on the Saturday 24 of February 2023 the Penetration testing team engaged
on a penetration test of the Juice Shop Service. All of the testing was performed
with the following methodology:

1. Discovery

2. Scanning

3. Fingerprinting

4. Exploitation

5. Reporting

Along this report the team has provided screenshots and important files used during
the assessment.

Found Vulnerabilities
Vulnerability Severity

Business Logic Critical

SQL Injection Critical

Information Disclosure High

Insecure Direct Object Reference High

Insecure direct object reference High

Reflected Cross Site Scripting High

Business Logic High

Information Disclosure High

Juice Shop Report 7

Insecure Direct Object Reference High

Observable Response Discrepancy Medium

Cross Site Request Forgery Medium

Information Disclosure Low

Business Logic Low

Information Disclosure Low

Cross Site Scripting Informational

Cookies Missing HTTP Only Flags Informational

Technical Explanation
Business Logic

Overview

Vulnerability Business Logic

Description

Weaknesses in this category identify some of the underlying problems that
commonly allow attackers to manipulate the business logic of an
application. Errors in business logic can be devastating to an entire
application. They can be difficult to find automatically, since they typically
involve legitimate use of the application’s functionality. However, many
business logic errors can exhibit patterns that are similar to well-understood
implementation and design weaknesses.

CVE/CEW CWE-840

Rating Critical

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:N

Endpoint /rest/wallet/balance

How to replicate
It is possible to add infinite negative money through the wallet balance endpoint

Juice Shop Report 8

It is predicted that once a rollback is triggered it would be possible to have positive
money but the team was not able to do such. When negative money is “debited” the
juice-shop accounts sends money on our bank account.

Juice Shop Report 9

Remediation
only allow to add positive numbers through an if statement presented underneath:

if (balance > 0)

This would also be fixed if a 3rd party payment system was used like stripe.

Stripe | Financial Infrastructure for the Internet
Stripe powers online and in-person payment processing and
financial solutions for businesses of all sizes. Accept payments,
send payouts, and automate financial processes with a suite of

https://stripe.com/en-at

SQL Injection

Overview

https://stripe.com/en-at

Juice Shop Report 10

Vulnerability SQL Injection

Description

The product constructs all or part of an SQL command using externally-
influenced input from an upstream component, but it does not neutralize or
incorrectly neutralizes special elements that could modify the intended SQL
command when it is sent to a downstream component.

CVE/CEW CWE-89

Rating Critical

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Endpoint /login

How to replicate
it is possible to login as admin with the following username and password:

' OR '1'='1' -- -

this entirely bypasses authentication and allows us to use the application as admin:

Juice Shop Report 11

You can also take this exploit to take over specific accounts like so:

emma@juice-sh.op' AND '1'='1' -- -

Remediation
To mitigate the SQL injection vulnerability, several steps can be taken. First, employ
parameterized queries or prepared statements instead of directly concatenating
user inputs into SQL queries. This ensures that user-supplied data is treated as data
rather than executable code. Additionally, implement input validation and sanitization

Juice Shop Report 12

routines to filter out potentially malicious characters and patterns from user inputs.
This can help to block SQL injection payloads before they reach the database.
Furthermore, enforce the principle of least privilege by ensuring that database users
have only the necessary permissions required for their intended tasks, reducing the
potential impact of successful SQL injection attacks. Regularly update database
software and libraries to patch any known vulnerabilities that could be exploited by
attackers. Lastly, conduct regular security audits and penetration tests to identify
and remediate any SQL injection vulnerabilities that may exist within the application.
By following these measures, the risk of SQL injection attacks can be significantly
reduced.

Information Disclosure

Overview

Vulnerability Information Disclosure

Description
The product exposes sensitive information to an actor that is not explicitly
authorized to have access to that information.

CVE/CEW CWE-220

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Endpoint /robots.txt

How to replicate
Navigate to http://localhost/robots.txt you will then find a link to the ftp public
access folder of the website:

http://localhost/robots.txt

Juice Shop Report 13

Remediation
Disallow the access to the ftp folder through .htaccess or other methods.

Deny access to one specific folder in .htaccess
I'm trying to deny users from accessing the site/includes folder
by manipulating the URL.

https://stackoverflow.com/questions/19118482/deny-access-t
o-one-specific-folder-in-htaccess

Insecure Direct Object Reference

Overview

Vulnerability Insecure Direct Object Reference

Description
The system's authorization functionality does not prevent one user from
gaining access to another user's data or record by modifying the key value
identifying the data.

CVE/CEW CWE-639

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Endpoint /rest/basket/{id}

How to replicate

https://stackoverflow.com/questions/19118482/deny-access-to-one-specific-folder-in-htaccess

Juice Shop Report 14

The view basket endpoint is vulnerable to insecure direct object reference it is
possible to view other acounts baskets through manipulation of the ID that is in the
url, a request of me viewing my basket:

my basket is set as id 6 if I change the id to an other number 1 for example I can
view a different user basket

With this we can also get the UserID of the account we are viewing the basket from.

Remediation

Juice Shop Report 15

To remediate the Insecure Direct Object Reference (IDOR) vulnerability, several key
measures can be implemented. First, establish robust authentication and
authorization mechanisms to ensure that users can only access their own basket
data. Next, replace direct object identifiers in URLs with indirect references to
prevent manipulation by unauthorized users. Validate user permissions before
allowing access to sensitive resources, ensuring that only authorized users can view
and modify their own baskets. Enforce Role-Based Access Control (RBAC) to restrict
users to actions and resources appropriate for their roles. Apply contextual access
controls based on user context to add an extra layer of security. Log access
attempts to sensitive resources for monitoring and detecting potential malicious
activities. Regularly conduct security assessments, including penetration testing and
code reviews, to identify and remediate vulnerabilities. Educate developers and
users on secure coding practices and the importance of data protection. Keep
software dependencies up to date to mitigate known vulnerabilities. Consider
implementing a bug bounty program to encourage responsible disclosure of
vulnerabilities. By implementing these measures, the IDOR vulnerability can be
effectively mitigated, enhancing overall application security.

Authorization - OWASP Cheat Sheet Series
Website with the collection of all the cheat sheets of the project.

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Insecure direct object reference

Overview

Vulnerability Insecure direct object reference

Description
The system's authorization functionality does not prevent one user from
gaining access to another user's data or record by modifying the key value
identifying the data.

CVE/CEW CWE-639

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

Endpoint api/Recycles/

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Juice Shop Report 16

How to replicate
it is possible to signup an other user to recycle by changing the userid and the
address as well:

Here provided is a request with the UserId modified to an other account we control
but not the account we are currently using.

Remediation

Juice Shop Report 17

check the registration to the recycle through the session and not imputed user value
to avoid a user being able to change and Identifier to then control the account of an
other user.

Authorization - OWASP Cheat Sheet Series
Website with the collection of all the cheat sheets of the project.

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Reflected Cross Site Scripting

Overview

Vulnerability Cross Site Scripting

Description

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites. XSS attacks
occur when an attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end user. Flaws
that allow these attacks to succeed are quite widespread and occur
anywhere a web application uses input from a user within the output it
generates without validating or encoding it.

CVE/CEW CWE-79

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

Endpoint /search

How to replicate
There is a reflected xss present in the search functionality

http://localhost/#/search?q=yq58calg%3C%2Fspan%3E%3Ch1%3Ehy%3C%

2Fh1%3E%3Cspan%3E

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Juice Shop Report 18

yq58calg<spa

Remediation
Implement proper input validation and output encoding mechanisms. Validate and
sanitize user inputs to ensure that they do not contain malicious scripts or payloads.
Additionally, use AngularJS's built-in features such as the Sanitize module to
sanitize user-generated content before rendering it in the browser. This prevents
injected scripts from being executed and mitigates the risk of XSS attacks. Regularly
update AngularJS and other dependencies to patch any known vulnerabilities.
Lastly, educate developers on secure coding practices to prevent similar
vulnerabilities in the future. By incorporating these measures, the application can be
safeguarded against XSS exploits, ensuring the security of user data and the
integrity of the system.

OWASP XSS Prevention Cheat Sheet

Mozilla Web Security Guidelines - Cross-Site Scripting (XSS)

Google Web Fundamentals - Cross-Site Scripting (XSS)

Juice Shop Report 19

Business Logic

Overview

Vulnerability Business Logic

Description

Weaknesses in this category identify some of the underlying problems that
commonly allow attackers to manipulate the business logic of an
application. Errors in business logic can be devastating to an entire
application. They can be difficult to find automatically, since they typically
involve legitimate use of the application’s functionality. However, many
business logic errors can exhibit patterns that are similar to well-understood
implementation and design weaknesses.

CVE/CEW CWE-840

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N

Endpoint rest/deluxe-membership

How to replicate
it is possible to register for membership + for free by setting the payment method to
null like so:

Remediation

Juice Shop Report 20

To mitigate the specific vulnerability identified in the website, where users can
register for a premium subscription with a null payment type and be automatically
subscribed, several targeted actions are necessary. The development team should
enhance input validation and server-side validation to ensure only valid payment
types are accepted, while also implementing a mandatory confirmation step before
finalizing subscriptions. Robust error handling mechanisms should be in place to
detect and address null payment type submissions promptly. Regular auditing and
monitoring of subscription transactions, along with transparent user notification
about accepted payment types, are crucial. Additionally, rigorous security testing
and compliance with relevant regulations such as PCI DSS are essential for
comprehensive mitigation. By diligently implementing these measures, the
vulnerability can be effectively addressed, ensuring the security of the subscription
process and preventing unauthorized access to premium services without valid
payment.

Authorization - OWASP Cheat Sheet Series
Website with the collection of all the cheat sheets of the project.

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Information Disclosure

Overview

Vulnerability Information Disclosure

Description
The product exposes sensitive information to an actor that is not explicitly
authorized to have access to that information.

CVE/CEW CWE-200

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Endpoint /rest/memories

How to replicate
on the request to the view memories password hashes are disclosed:

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Juice Shop Report 21

Remediation
The development team should implement access controls to restrict unauthorized
access to sensitive user information, such as password hashes. Additionally,
consider using secure hashing algorithms (e.g., bcrypt, Argon2) with proper salting
and iteration counts to hash passwords securely. It's crucial to avoid storing or
exposing password hashes directly and instead provide functionalities for password
reset or authentication using secure mechanisms. Conduct thorough security
testing, including vulnerability scanning and code reviews, to identify and remediate
any similar vulnerabilities within the application. Lastly, prioritize user education on
password security best practices, emphasizing the importance of using strong,
unique passwords and enabling multi-factor authentication. By diligently
implementing these measures, the vulnerability can be effectively mitigated,
safeguarding user passwords and enhancing overall application security.

Insecure Direct Object Reference

Overview

Vulnerability Insecure Direct Object Reference

Juice Shop Report 22

Description
The system's authorization functionality does not prevent one user from
gaining access to another user's data or record by modifying the key value
identifying the data.

CVE/CEW CWE-639

Rating High

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N

Endpoint api/feedbacks/{id}

How to replicate
As a regular user it is possible to send a DELETE request on /api/feedbacks and delete
feedbacks present on the admin pannel even if you are not an admin user:

Remediation
Implement proper access controls to ensure that users can only access feedback
submissions that belong to them. This includes validating user permissions and
enforcing restrictions based on user roles or ownership of feedback entries.
Additionally, utilize indirect references such as unique identifiers instead of exposing
direct object identifiers in URLs. Apply server-side validation to check the
authenticity of user requests and prevent unauthorized access to feedback data.
Regularly audit and monitor feedback submissions to detect any unauthorized
access attempts. Furthermore, educate developers and users about the importance

Juice Shop Report 23

of data privacy and security to prevent future instances of IDOR vulnerabilities.
Conduct thorough security testing, including penetration testing and code reviews,
to identify and address any remaining vulnerabilities in the feedback mechanism. By
implementing these measures, the IDOR vulnerability in the feedback mechanism
can be effectively mitigated, ensuring the confidentiality and integrity of user
feedback data.

Observable Response Discrepancy

Overview

Vulnerability Observable Response Discrepancy

Description
The product provides different responses to incoming requests in a way
that reveals internal state information to an unauthorized actor outside of
the intended control sphere.

CVE/CEW CWE-204

Rating Medium

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

Endpoint /rest/user/security-question?email=leo@localhost.net

How to replicate
It is possible to enumerate usernames through the security questions where you can
discover emails through brute force on the endpoint in question to find the different
security questions tied to emails. Here is a sample request with a valid email:

Here is a sample request with an invalid email:

Juice Shop Report 24

From this vulnerability we can create a quick script that will verify every email from a
list:

#!/bin/bash

brute_email.sh

Created on: Mon 26 Feb 2024 10:36:58 AM CET

#

____ __ ____ __

(_ \ /. |(_ \/)

)___/(_ _))___/)(

(__) (_)(__) (__)

#

Description:

#

while read email; do

res=$(curl -s -k -X $'GET' \

-H $'Host: localhost' -H $'sec-ch-ua: \"Not_A Brand\";v

=\"8\", \"Chromium\";v=\"120\"' -H $'Accept: application/json,

text/plain, */*' -H $'sec-ch-ua-mobile: ?0' -H $'User-Agent: Mo

zilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHT

ML, like Gecko) Chrome/120.0.6099.216 Safari/537.36' -H $'sec-c

h-ua-platform: \"Linux\"' -H $'Sec-Fetch-Site: same-origin' -H

$'Sec-Fetch-Mode: cors' -H $'Sec-Fetch-Dest: empty' -H $'Refere

r: http://localhost/' -H $'Accept-Encoding: gzip, deflate, br'

-H $'Accept-Language: en-US,en;q=0.9' -H $'Connection: close' \

-b $'language=en; welcomebanner_status=dismiss; cookiec

onsent_status=dismiss' \

Juice Shop Report 25

"http://localhost/rest/user/security-question?email=$em

ail" | jq .question 2> /dev/null)

if [["$res" = "null"]]; then

echo -n ""

else

echo "Found: $email"

fi

done < /tmp/emails.txt

Remediation
It is recommend to first send a password reset link system instead of directly
replying with a security question. It is also recommended to not show success /
failure on resetting an account since that can easily be abused to enumerate user
names.

Cross Site Request Forgery

Overview

Vulnerability Cross Site Request Forgery

Description
The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.

CVE/CEW CWE-352

Rating Medium

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N

Endpoint /profile

Juice Shop Report 26

How to replicate
It is possible to make a user change their username through a CSRF attack on the
/profile endpoint using the following code hosted on your website and a victim
opening the url:

<html>

 <!-- CSRF PoC - generated by Burp Suite Professional -->

 <body>

 <form action="http://localhost/profile" method="POST">

 <input type="hidden" name="username" value="qwerty" />

 <input type="submit" value="Submit request" />

 </form>

 <script>

 history.pushState('', '', '/');

 document.forms[0].submit();

 </script>

 </body>

</html>

Remediation

Juice Shop Report 27

Implement CSRF tokens on the forms inside of the backend to protect the different
forms. Provided is a tutorial on how to achieve this:

Node.js CSRF Protection Guide: Examples and How to Enable It
Learn about cross-site request forgery, list some examples of CSRF
attacks, and some mitigation strategies against them in Node.js.

https://www.stackhawk.com/blog/node-js-csrf-protection-guide-ex
amples-and-how-to-enable-it/

Information Disclosure

Overview

Vulnerability Information Disclosure

Description
The product exposes sensitive information to an actor that is not explicitly
authorized to have access to that information.

CVE/CEW CWE-220

Rating Low

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

Endpoint /api/SecurityAnswers/

How to replicate

{"UserId":2'2,"answer":"abc","SecurityQuestionId":2}

if you send a malformed json to an endpoint you get an error showing more
information that supposed to:

https://www.stackhawk.com/blog/node-js-csrf-protection-guide-examples-and-how-to-enable-it/

Juice Shop Report 28

Remediation
It is important using try and catch inside of your javascript code to capture verbose
error messages and only return the bare minimum of information on the production
build of a web application.

Business logic

Overview

Vulnerability Business Logic

Description Weaknesses in this category identify some of the underlying problems that
commonly allow attackers to manipulate the business logic of an
application. Errors in business logic can be devastating to an entire
application. They can be difficult to find automatically, since they typically
involve legitimate use of the application’s functionality. However, many

Juice Shop Report 29

business logic errors can exhibit patterns that are similar to well-understood
implementation and design weaknesses.

CVE/CEW CWE-840

Rating Low

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Endpoint /chatbot

How to replicate
it is possible to spam the chat bot up until it gives you a code:

mNYT0g+yBo

Remediation
First, implement rate limiting or cooldown mechanisms within the chatbot to prevent
users from excessively querying discount codes within a short period of time. This
ensures that legitimate users can still access the chatbot without disruption while

Juice Shop Report 30

mitigating abuse. Additionally, introduce authentication and authorization checks to
ensure that only authenticated users are eligible to receive discount codes, and limit
the number of codes a user can request within a specified time frame. Furthermore,
consider implementing CAPTCHA or other bot detection mechanisms to distinguish
between human users and automated scripts attempting to exploit the system.
Regularly monitor chatbot interactions and analyze usage patterns to detect and
mitigate suspicious activity. Lastly, review and update the business logic governing
discount code generation and distribution to ensure that it aligns with the intended
functionality and security requirements of the application. By implementing these
measures, the vulnerability can be effectively mitigated, reducing the risk of abuse
and unauthorized access to discount codes.

Information Disclosure

Overview

Vulnerability Information Disclosure

Description
The product exposes sensitive information to an actor that is not explicitly
authorized to have access to that information.

CVE/CEW CWE-220

Rating Low

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Endpoint /main.js

How to replicate
when opening the file main.js you can view the different routes since this is a front-
end built route system:

Juice Shop Report 31

Remediation
Do not manage on the front-end the routes of sensitive pages. Front-end code can
easily be modified and accessed. It is recommend to leave access control
management handling to the backend since that code is not as easily bypassed as
front-end code.

HTML Injection through Feedback

Overview

Vulnerability Cross Site Scripting

Description

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites. XSS attacks
occur when an attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end user. Flaws
that allow these attacks to succeed are quite widespread and occur
anywhere a web application uses input from a user within the output it
generates without validating or encoding it.

CVE/CEW CWE-79

Rating Informational

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Endpoint /#/administration

Juice Shop Report 32

How to replicate
Inside of the administration page there is a stored HTML injection present since the
email address is improperly sanitized and injected in the page with document.innerHTML
:

With this it is then possible to inject a pointing to any link that we would
like. Which could then be changed to another vulnerability to cause more damage.

Juice Shop Report 33

{"UserId":1,"captchaId":3,"captcha":"6","comment":"<a href='/sear

Remediation
Implement strict input validation and output encoding within the admin panel to
sanitize user-generated content, preventing the injection of HTML tags. Additionally,
enforce role-based access control to restrict administrator privileges and limit
access to sensitive functionalities. Employ CSRF tokens to prevent unauthorized
actions initiated by malicious links. Conduct comprehensive security training for
administrators, emphasizing vigilance against social engineering attacks and
suspicious links. Regularly update and patch the application to mitigate known
vulnerabilities. Implement Content Security Policy (CSP) headers to mitigate the
impact of XSS attacks. Enhance monitoring and logging mechanisms to detect and
respond to suspicious activities promptly. Collaborate with cybersecurity experts to
conduct thorough penetration testing and vulnerability assessments. Foster a
culture of cybersecurity awareness and proactive risk management within the
organization. Communicate transparently with users and stakeholders about
security measures implemented to protect sensitive data and prevent future
vulnerabilities.

Cookies Missing HTTP Only Flags

Overview

Vulnerability Cookies Missing HTTP Only Flags

Description If the HttpOnly attribute is set on a cookie, then the cookie's value cannot
be read or set by client-side JavaScript. This measure makes certain client-
side attacks, such as cross-site scripting, slightly harder to exploit by

Juice Shop Report 34

preventing them from trivially capturing the cookie's value via an injected
script.

CVE/CEW CWE-1004

Rating Informational

CVSS Rating CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Endpoint /

How to replicate
When logging into the application we can the see that the cookie is not set as HTTP
only:

Remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless
you specifically require legitimate client-side scripts within your application to read
or set a cookie's value, you should set the HttpOnly flag by including this attribute
within the relevant Set-cookie directive.
You should be aware that the restrictions imposed by the HttpOnly flag can
potentially be circumvented in some circumstances, and that numerous other
serious attacks can be delivered by client-side script injection, aside from simple
cookie stealing.

